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ABSTRACT

Developmental programming is the concept that ‘stressors’ during development (i.e. pregnancy, the
perinatal period and infancy) can cause long-term changes in gene expression, leading to altered
organ structure and function. Such long-term changes are associated with an increased risk of a
host of chronic pathologies, or non-communicable diseases including abnormal growth and body
composition, behavioural or cognitive dysfunction, metabolic abnormalities, and cardiovascular,
gastro-intestinal, immune, musculoskeletal and reproductive dysfunction. Maternal nutrition
during the periconceptual period, pregnancy and postnatally can have profound influences on
the developmental program. Animal models, including domestic livestock species, have been
important for defining the mechanisms and consequences of developmental programming. One
of the important observations is that maternal nutritional status and other maternal stressors
(e.g. environmental temperature, high altitude, maternal age and breed, multiple fetuses, etc.)
early in pregnancy and even periconceptually can affect not only embryonic/fetal development
but also placental development. Indeed, altered placental function may underlie the effects of
many maternal stressors on fetal growth and development. We suggest that future directions
should focus on the consequences of developmental programming during the offspring’s life
course and for subsequent generations. Other important future directions include evaluating
interventions, such as strategic dietary supplementation, and also determining how we can take
advantage of the positive, adaptive aspects of developmental programming.

Keywords: developmental programming, fetal programming, gene expression, maternal nutrition,
organ function, organ structure, periconceptual, placental programming.

Introduction

Developmental programming, also known as fetal programming, is the concept that 
developmental stressors can alter gene expression in the developing fetus/neonate via 
epigenetic mechanisms. Such epigenetic alterations are thought to ‘program’ not only 
fetal and postnatal growth and development, but also to cause long-term changes in 
organ structure (e.g. altered number of nephrons in the kidney, altered pancreatic islet 
number or size, altered number of myofibres) and function (Barker 1990; Paneth and 
Susser 1995, 2004; Armitage et al. 2004; Wu et al. 2006; Caton and Hess 2010; 
Reynolds et al. 2010a, 2017, 2019, 2022; Reynolds and Caton 2012; Caton et al. 2019; 
Dahlen et al. 2021; Diniz et al. 2022). The consequences of developmental programming 
include preterm delivery, low birth weight and poor survival of newborns as well as a 
host of chronic pathologies in the offspring including abnormal growth and body 
composition, behavioural or cognitive dysfunction, metabolic abnormalities and 
cardiovascular, gastro-intestinal, immune, musculoskeletal and reproductive dysfunction 
(Barker 2004; Wu et al. 2006; Caton and Hess 2010; Reynolds et al. 2010a, 2017, 2019, 
2022; Reynolds and Caton 2012; Reynolds and Vonnahme 2016; Caton et al. 2019; 
Cushman and Perry 2019; Dahlen et al. 2021). Additionally, chronically altered function of 
organ systems may contribute to aging and, importantly for livestock production, reduced 
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longevity and production (Zambrano et al. 2014, 2015, 2020, 
2021; Du et al. 2015; Franke et al. 2017; Kuo et al. 2017, 2018; 
Pankey et al. 2017; Yang et al. 2017; Broadhead et al. 2019; 
Cushman and Perry 2019; Wang et al. 2019). 

The concept of developmental programming was first 
articulated by Dr. David Barker and colleagues. They used 
epidemiological evidence in humans to show a strong associa-
tion between low birth weight, poor postnatal environ-
ment, or other developmental insults, and the subsequent 
risk of developing the range of pathologies noted above 
(Barker 1990, 2004). These studies suggested that an adverse 
intrauterine environment can lead to a greater incidence of 
non-communicable diseases in the offspring and that poor 
maternal nutrition was ‘.. an obvious suspect (Barker 1990, 
2004).’ Subsequently, numerous epidemiological studies in 
humans, as well as many carefully controlled studies in various 
animal models, have confirmed the initial observations of 
Barker and colleagues, and some of the risk factors for 
developmental programming have been identified (Armitage 
et al. 2004; Wu et al. 2006; Caton and Hess 2010; Reynolds 
et al. 2010a, 2017, 2019, 2022; Reynolds and Caton 2012; 
Reynolds and Vonnahme 2017; Caton et al. 2019). 

An additional, and important concept is that develop-
mental programming must have entered and remained in 
the genome because of its adaptive advantages (Nettle et al. 
2013; Bateson et al. 2014; Mueller et al. 2015). Whether we 
can take advantage of these adpatations to improve fitness 
and therefore productivity of the offspring is not known but 
should be kept in mind as we study various aspects of 
developmental programming (Reynolds et al. 2022). 

Maternal nutrition

Maternal nutrition has a profound effect on fetal growth, as 
reflected by fetal weights in late pregnancy (Reynolds et al. 
2019, 2022). For example, adolescent sheep that are overfed 
throughout pregnancy exhibit reduced fetal and placental 
weights similar to those of heat-stressed adult mothers. In 
this experimental paradigm, not only is placental vascular 
development reduced, but gravid uterine (maternal placental) 
and umbilical (fetal placental) blood flows are profoundly 
reduced, similar to that seen in heat-stressed pregnancies 
(Reynolds et al. 2019, 2022). Reduced placental blood 
flows are associated with altered placental vascular growth 
and development (Reynolds et al. 2006, 2010a, 2010b, 
2019, 2022). 

These observations are not surprising, as soon after 
implantation the placenta becomes the sole organ of 
exchange between the fetal and maternal systems. In other 
words, very early in pregnancy, the exchange of nutrients, 
oxygen and metabolic wastes between the maternal and fetal 
systems occurs solely via the placenta (Mayhew et al. 2004; 
Redmer et al. 2005, 2009; Vonnahme et al. 2007; Mayhew 
2009; Reynolds et al. 2010b). Because it is primarily an 

organ of transport, the placenta also develops an extensive 
blood supply (i.e. it becomes highly vascular), which causes 
gravid uterine and umbilical blood flows (that represent 
the blood supplies to the maternal and fetal sides of the 
placenta, respectively) to increase exponentially throughout 
pregnancy. In fact, the increase in umbilical blood flow keeps 
pace with the exponential growth of the fetus (Reynolds and 
Redmer 1995; Reynolds et al. 2010b). 

Many studies in livestock have shown that placental 
development and function are altered late in pregnancy in a 
variety of models of developmental programming, including 
maternal dietary intake (overfed or underfed), environmental 
heat stress, multiple pregnancies (singletons vs twins or 
triplets), maternal age (adolescent vs adult pregnancies), 
and maternal breed (Reynolds et al. 2019, 2022). These 
observations agree with those in other species, including 
humans (Mayhew et al. 2004; Reynolds et al. 2006; Mayhew 
2009). In addition, defects in placental growth, including 
vascular defects, normally precede altered fetal growth and 
development (Reynolds et al. 2017, 2019). 

We have shown in nutritionally-compromised pregnancies 
that placental vascular development is reduced very early 
in gestation (Grazul-Bilska et al. 2013, 2014; Vonnahme 
et al. 2013; Reynolds et al. 2014, 2019, 2022; Bairagi 
et al. 2016; McLean et al. 2017). Not only is placental 
vascular development altered by maternal nutrition during 
early pregnancy, but other aspects of placental function 
are affected as well. For example, placental expression of 
nutrient transporters and angiogenic factors is reduced in 
nutrient-restricted heifers during early pregnancy (Table 1). 
Similarly, maternal dietary restriction during early pregnancy 
profoundly affects gene expression in fetal liver, muscle and 
cerebrum (Table 1). 

Because placental vascular growth and development are 
critical for normal placental function (Reynolds and 
Redmer 1995; Reynolds et al. 2010b, 2013, 2014; Bairagi 
et al. 2016), the observations described in the preceding 
paragraph have led to the concept of placental programming; 
i.e. that defects in placental growth and development 
underpin the altered fetal growth and organ development 
that is seen with developmental programming by maternal 
nutrition, and perhaps other ‘stressors’ such as in vitro produc-
tion of embryos (see the next section of the manuscript; 
Reynolds et al. 2006; Vonnahme et al. 2013; Bairagi et al. 
2016; Reynolds and Vonnahme 2017). Thus, despite the low 
metabolic demands of the conceptus in early pregnancy, these 
studies have confirmed that poor maternal diet can ‘program’ 
placental, and consequently fetal, development during their 
earliest stages (Diniz et al. 2021a, 2021b). In addition, 
maternal nutritional restriction is associated with effects, either 
directly or indirectly (e.g. via altered placental development 
and function) on gene expression in fetal organs (Table 1). 
Importantly, we also have shown that nutritional interven-
tions (e.g. vitamin–mineral, energy and/or one-carbon 
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Table 1. Experimental paradigms of maternal nutrition in cattle and sheep and outcomes for placental vascularity, placental nutrient transporters
and placental and fetal organ gene expression during early pregnancy.

Experimental paradigmA OutcomeB

Placental vascularity Placental nutrient transporters Placental or fetal organ gene
expression

Nutrient restriction ↓ in COT ↓SLC7A2 in ICAR; ↑SLC7A2 and ↓SLC7A5 in ENDO
and ICOT; ↓SLC2A3 and SLC7A1 in DG; ↓SLC7A1 in
MYO; ↓SLC7A1, SLC38A2 and SLC38A7 in all U-P
tissues

↓VEGF in ICAR; mostly up-regulation in
fetal liver (n = 125 genes), muscle
(n = 106 genes), and cerebrum (n = 60
genes)

Vitamin–mineral and energy
supplementation

No Effect in early
pregnancy (but ↑ in
COT at parturition)

– Differential expression of many energy-
metabolism and transport-related genes in
CAR and COT

One-carbon metabolite
supplementation

↑ in CAR and EG – –

Assisted reproduction/in vitro
production of embryos

↓ in CAR & COT – ↓VEGF, FLT1, ANGPT1 and TEK in CAR,
and ↓VEGF, FLT1, ANGPT1/2 and NOS3 in
COT

AOutcomes for nutrient restriction, vitamin–mineral supplementation, and one-carbon metabolite supplementation paradigms were all for cattle at day 50 (0.18 [18%])
through day 84 (0.3) of gestation (Crouse et al. 2017, 2019, 2020, 2021; McLean et al. 2017; Diniz et al. 2021a, 2021b; Dávila Ruiz et al. 2022; Kanjanaruch C, Bochantin
KA, Borowicz PP, Reynolds LP, Crouse MS, Caton JS, Dahlen CR, Navanukraw C and Ward AK, unpubl.); outcomes for assisted reproduction/in vitro production of
embryos were for sheep on day 22 (0.15) of pregnancy (Grazul-Bilska et al. 2014).
BFor outcomes: ↓, downregulated compared with control; ↑, upregulated compared with control.
Abbreviations for tissues: CAR, maternal caruncle; ICAR, maternal intercaruncular endometrium; COT, fetal cotyledon; ICOT, fetal intercotyledonary chorioallantois
(these four represent placental tissues); U-P, utero-placenta; ENDO, maternal endometrium; EG, endometrial glands; DG, deep endometrial glands; MYO, maternal
myometrium. The CAR and COT together comprise the placentome, which is the primary region of intervascular exchange between the maternal and fetal systems.
The ICAR and ICOT contain uterine glands (ICAR), which produce and secrete histotroph (uterine milk), and the corresponding areolae (ICOT), which provide for
absorption of the histotroph. For placental nutrient transporters or angiogenic factors, abbreviations in italics represent genes whereas non-italicised abbreviations
represent proteins.
Abbreviations for nutrient transporters and angiogenic factors: SLC2A3 = GLUT3, Glucose transporter 3; SLC7A1 = CAT1, high affinity cationic amino acid
transporter 1; SLC7A2 = CAT2, low affinity cationic amino acid transporter 2; SLC7A5 = LAT1, L-type amino acid transporter 1; SLC38A2 = SNAT2, sodium-
coupled neutral amino acid transporter 2; SLC38A7 = SNAT7, putative sodium-coupled neutral amino acid transporter 7; VEGF, vascular endothelial growth
factor; FLT1, VEGF receptor 1; ANGPT1 and ANGPT2, angiopoietin 1 and 2; TEK, angiopoietin receptor; and NOS3, nitric oxide synthase 3, endothelial nitric
oxide synthase.
–, no data.

metabolite supplementation; Table 1) can  ‘rescue’ placental 
vascular development. 

An additional time during which maternal nutrition 
seems to be important is the periconceptual period; that is, 
immediately before and after conception. Perhaps one of 
the most dramatic examples of developmental programming 
involves maternal nutrient restriction of ewes for 60 days 
before until 30 days after mating, which results in delivery 
an average of 7 days early compared with normally fed 

and results in ‘ : : :  all preterm lambs [dying] ewes soon 
after birth’ (Fig. 1; Bloomfield et al. 2003; Kumarasamy 
et al. 2005). Similarly, overfeeding or underfeeding of ewes 
for 8 weeks before collecting their oocytes results in poor 
rates of in vitro fertilisation and poor development of 
embryos in vitro (Fig. 2; Grazul-Bilska et al. 2012). These 
studies emphasise the importance of maternal nutritional 
status not only during early pregnancy but also during the 
periconceptual period. 

As we have already mentioned, developmental program-
ming must have entered and remained in the genome 

Fig. 1. Cumulative probability of nondelivery in sheep subjected to
nutrient restriction (solid line) from 60 days before until 30 days
after mating compared with controls (dashed line); normal time of
delivery is approximately 145–150 days of gestation. In this paradigm,
‘ : : :  all preterm lambs died soon after birth’ (Kumarasamy et al.
2005). Used, with permission, from Bloomfield et al. (2003).
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Fig. 2. Percentage of healthy oocytes collected, and cleaved oocytes, morulas and blastocysts after
in vitro fertilisation and in vitro culture for control, overfed and underfed (for 60 days before in vitro
fertilisation) in sheep. Taken, with permission, from Grazul-Bilska et al. (2012).

because of its adaptive advantages (Nettle et al. 2013; Bateson 
et al. 2014; Mueller et al. 2015), and taking advantage of 
these may improve fitness and therefore productivity of the 
offspring (Reynolds et al. 2022). For example, our studies 
of maternal nutritional status during the first 50 days of 
pregnancy in cattle showed that the vast majority of genes 
in fetal liver, muscle, and brain were upregulated in fetuses 
from nutrient-restricted dams (Table 1). Based on these 
observations, we have suggested that the upregulation of 
genes may represent an adaptive response to the maternal 
nutrient restriction (Crouse et al. 2019; Reynolds et al. 
2022). This suggestion seems likely, as cattle under an 
extensive, pasture-based system, which is very common in 
regions with large areas of grassland such as the western 
region of the U.S., are often under nutritional stress during 
early pregnancy, which is typically in the fall, because of 
the declining yield and quality of pastures (Krysl et al. 
1987; Wu et al. 2006; NASEM 2016; Caton et al. 2019, 
2020). Thus, the adaptive response to limited maternal 
nutrient intake seems to involve upregulation of genes and 
even ‘rewiring’ of gene networks at the systems level 
(Caton et al. 2020; Diniz et al. 2021b). 

In vitro production (IVP) of embryos

An instructive paradigm that is likely related to the nutri-
tional, or perhaps more appropriately the environmental, 
status of the embryo during fertilisation and early 
development is that of in vitro production (IVP) of embryos. 
As shown by Loi et al. (2006) and subsequently many 
others, IVP by in vitro fertilisation or cloning results in a 

relatively low percentage (10–40%) of embryos surviving to 
term (Palmieri et al. 2008; Reynolds et al. 2013, 2014, 
2019, 2022). Associated with the high rate of embryonic loss 
and poor pregnancy outcomes is poor embryonic and placental 
development very early in pregnancy (approximately 0.15, or 
15%, of gestation; Arnold et al. 2006; Palmieri et al. 2007, 
2008; Grazul-Bilska et al. 2013, 2014; Fidanza et al. 2014; 
Reynolds et al. 2014). 

As shown in Table 2, poor embryonic and placental 
development after assisted reproductive technologies (ART) 
includes reduced fetal and placental growth; reduced 
placental vascularisation; reduced placental expression of a 
host of angiogenic factors, gap junctional connexins, and DNA 
methyl transferases; increased conceptus DNA methylation; 
and altered placental expression of oestrogen and progesterone 
receptors. All of these alterations would be expected to 
dramatically affect embryonic and placental growth and 
development and likely contribute to placental programming. 

Observations in other mammalian species, including 
humans, have shown similar results after ART, including 
poor embryonic/fetal and placental development, poor 
pregnancy outcomes, and developmental programming of 
the offspring (Beaujean et al. 2004; Farin et al. 2006; Loi 
et al. 2006; Palmieri et al. 2007, 2008; Canovas et al. 2017; 
Coy et al. 2022). A promising approach to at least partially 
overcome the embryonic/fetal and placental defects seen 
with ART is the inclusion of oviductal or other reproductive 
fluids in the culture media. Inclusion of oviductal and 
other reproductive fluids improves the success of IVP and 
subsequent pregnancy rates and also reduces the effects of 
IVP on embryonic/fetal gene expression and DNA methyla-
tion status (Coy and Yanagimachi 2015; Canovas et al. 
2017; Coy et al. 2022). 
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Table 2. Comparison of several processes and factors in maternal and fetal placenta during early pregnancy in sheep (day 22 after mating/
fertilisation; approx. 0.15 of gestation) after application of ART (NAT-ET, naturally mated followed by embryo transfer; IVF, in vitro fertilisation;
IVA, in vitro activation [i.e. parthenogenetic activation of embryonic development]) compared with control pregnancies achieved by natural
mating and sampled on day 22.

Process Factor NAT-ET group IVF group IVA group

Maternal Fetal Maternal Fetal Maternal Fetal
Placenta placenta Placenta placenta Placenta placenta

Angiogenic factor mRNA VEGF ↓ ↓ – ↓ ↓ ↓ 

PGF ↓ ↓ – ↓ – –

FLT1 ↓ ↓ ↓ ↓ ↓ ↓ 

KDR – – – – – –

NP1 – ↓ – ↓ – ↓ 

NP2 – – – ↓ – ↓ 

ANGPT1 ↓ ↓ – ↓ – ↓ 

ANGPT2 – ↓ – ↓ – ↓ 

TEK ↓ – ↓ – ↓ –

NOS3 – ↓ – – – ↓ 

GUCY1B3 – – – – – –

HIF1A – ↓ – – – ↓ 

FGF2 – ↓ – ↓ – ↓ 

FGFR – ↓ – ↓ – –

Global DNA methylation DNMT1 mRNA – – – – – ↑ 

DNMT3a mRNA ↓ – ↓ – ↓ –

DNMT3b mRNA – – – – – –

5mC NP – NP ↑ NP ↑ 

Steroid receptor mRNA Nuclear P4 ↓ – ↓ – ↓ –

Membrane P4α – – – – – –

Membrane P4β – – – – – –

Membrane P4γ – – – – – –

ERα ↓ – ↓ ↑ ↓ ↑ 

ERβ – – – – – -

Gap junctional connexin mRNA Cx26 – – – – – ↑ 

Cx32 ↓ – ↓ – ↓ –

Cx37 – – – – – –

Cx43 – – – – – –

Vascularisation Blood vessel number ↓ – ↓ ↓ ↓ ↓ 

Capillary size – NP ↓ NP ↓ NP

Tissue growth Length of fetus NA ↓ NA ↓ NA ↓ 

Labelling index ↓ ↓ ↓ ↓ ↓ ↓ 

ART, assisted reproductive technologies. Adapted from Reynolds et al. (2013, 2014). Compared to pregnancies from natural breeding (control): ↓, downregulated
compared with control; ↑, upregulated compared with control; –, not different from control; NA, data not available; and NP, not performed. Table taken with
permission from Reynolds et al. (2013).

Conclusions and future directions in ‘programming’ of gene expression and subsequently 
altered growth and development. Recent data have shown 
that programming of placental growth and development 
very early in pregnancy may underlie many of the defects 
in embryonic/fetal growth and development that lead to 

As discussed in this review, maternal nutritional status, ART, 
and a host of other maternal ‘stressors’ can profoundly affect 
embryonic/fetal development and survival, and often result 
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poor outcomes during pregnancy and postnatally. In addition, 
maternal nutrition during the periconceptual period, that is, 
before and immediately after mating, also appears to 
program conceptus development. 

Whether such early programming has long-lasting effects 
is unclear, but certainly epigenetic alterations occur, and 
there is every reason to believe they affect organ structure 
and function and will have lasting consequences throughout 
an individual’s life. Nevertheless, an important direction for 
future research is investigating the consequences of early 
programming both for health and productivity of the 
offspring and subsequent generations. 

Another important area of future research focus should 
be whether interventions, including some of those discussed 
in this review, such as strategic dietary supplementation 
or culture of embryos with reproductive fluids, can mitigate 
some of the negative consequences of developmental 
programming, or even enhance the fitness of the offspring and 
future generations. That is, whether some of the strategies 
currently being evaluated for their ability to overcome the 
negative consequences of developmental programming can 
actually take advantage of the positive effects of develop-
mental programming. This is especially apropos since, as 
we have already mentioned, it seems clear that we need a 
much better understanding of whether changes in expression 
of fetal and placental genes are adaptive, and therefore 
positive, or maladaptive, and therefore detrimental in both 
the short and long term. 
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